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Abstract
Background  This study aimed to construct predictive models for the risk of sepsis in patients with Acute pancreatitis 
(AP) using machine learning methods and compared optimal one with the logistic regression (LR) model and scoring 
systems.

Methods  In this retrospective cohort study, data were collected from the Medical Information Mart for Intensive 
Care III (MIMIC III) database between 2001 and 2012 and the MIMIC IV database between 2008 and 2019. Patients 
were randomly divided into training and test sets (8:2). The least absolute shrinkage and selection operator (LASSO) 
regression plus 5-fold cross-validation were used to screen and confirm the predictive factors. Based on the 
selected predictive factors, 6 machine learning models were constructed, including support vector machine (SVM), 
K-nearest neighbour (KNN), multi-layer perceptron (MLP), LR, gradient boosting decision tree (GBDT) and adaptive 
enhancement algorithm (AdaBoost). The models and scoring systems were evaluated and compared using sensitivity, 
specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and the area under the curve 
(AUC).

Results  A total of 1, 672 patients were eligible for participation. In the training set, 261 AP patients (19.51%) were 
diagnosed with sepsis. The predictive factors for the risk of sepsis in AP patients included age, insurance, vasopressors, 
mechanical ventilation, Glasgow Coma Scale (GCS), heart rate, respiratory rate, temperature, SpO2, platelet, red blood 
cell distribution width (RDW), International Normalized Ratio (INR), and blood urea nitrogen (BUN). The AUC of the 
GBDT model for sepsis prediction in the AP patients in the testing set was 0.985. The GBDT model showed better 
performance in sepsis prediction than the LR, systemic inflammatory response syndrome (SIRS) score, bedside index 
for severity in acute pancreatitis (BISAP) score, sequential organ failure assessment (SOFA) score, quick-SOFA (qSOFA), 
and simplified acute physiology score II (SAPS II).

Conclusion  The present findings suggest that compared to the classical LR model and SOFA, qSOFA, SAPS II, SIRS, 
and BISAP scores, the machine learning model-GBDT model had a better performance in predicting sepsis in the AP 
patients, which is a useful tool for early identification of high-risk patients and timely clinical interventions.
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Background
Acute pancreatitis (AP), an inflammatory disease of the 
pancreas, is the leading cause of hospital admissions for 
gastrointestinal diseases worldwide [1, 2]. The worldwide 
incidence rate of AP is 33.74 per 100,000 person-years, 
with a gradual increase in incidence [3, 4]. Approxi-
mately 10–20% of patients with AP have complicated 
systemic inflammatory response syndrome (SIRS) and 
multiple organ dysfunction syndrome, which can lead 
to the development of severe AP with a mortality rate of 
10–15% [5]. Sepsis is a life-threatening SIRS caused by 
the host’s dysregulated response to infection, which ulti-
mately leads to septic shock and multiple organ failure 
and is the main cause of health loss all over the world [6]. 
Up to 40–70% of patients with AP will develop an infec-
tion related to pancreatitis in the late stages, or sepsis 
in severe cases [7, 8]. The progression of AP to sepsis is 
associated with higher mortality rates and a poor prog-
nosis [9]. Therefore, early identification of AP patients 
who are likely to develop sepsis is of great significance for 
reducing mortality and disease burden.

Several scoring systems have been identified to predict 
the severity and prognosis of AP and sepsis, including 
the SIRS score, bedside index for severity in acute pan-
creatitis (BISAP) score, sequential organ failure assess-
ment (SOFA) score, quick-SOFA (qSOFA), simplified 
acute physiology score II (SAPS II) [10–12]. However, 
poor performances of scoring systems in predicting sep-
sis have been observed [13]. The predictive performance 
of the logistic regression (LR) model based on conven-
tional clinical indicators in predicting sepsis among 
patients with AP was also moderate, with the area under 
the receiver (AUC) of the operating characteristic curve 
(ROC) value being 0.73 [9]. Advanced machine learning 
algorithms can model nonlinear relationships, analyze 
complex high-order interactions, and robustly handle 
multicollinearity among the predictor variables [14]. 
Machine learning has been widely used in the diagnosis/
risk prediction of sepsis, and the prognosis of sepsis. A 
database study conducted a machine learning approach 
to predict 30-day mortality for patients with sepsis, the 
AUC of the model was 0.857 [15]. A study conducted in 
the Chinese population used a machine learning model 
for accurate prediction of sepsis in intensive care unit 
(ICU) patients, the established machine learning-based 
model showed good predictive ability with AUC being 
0.91 [16]. In addition, the machine learning model also 
showed excellent predictive value for severe AP and con-
current acute kidney injury (AKI) risk in AP [17, 18]. 
However, to the best of our knowledge, no study has 
reported the application of machine learning in predict-
ing the risk of sepsis in patients with AP. The early detec-
tion and prediction of patients who may develop sepsis 
are essential to improve the adverse consequences of AP.

Herein, this study aimed to (1) construct predictive 
models for the risk of sepsis in patients with AP using 
machine learning methods and validate the predictive 
performances; (2) select the optimal machine learning 
model and compare it with the LR model and scoring 
systems. This study may help to identify the risk of sep-
sis in patients with AP at an early stage and assist in the 
clinical treatment of AP and the prevention of sepsis.

Methods
Data design and study population
This study was a retrospective cohort study. Data were 
collected from Medical Information Mart for Inten-
sive Care III (MIMIC III) database (https://mimic.mit.
edu/docs/iii/) between 2001 and 2012 and the MIMIC 
IV database (https://mimic.mit.edu/docs/iv/) between 
2008 and 2019. MIMIC-III includes data from more than 
58,000 admissions to Beth Israel Deaconess Medical Cen-
ter in Boston from 2001 to 2012, including 38,645 adults 
and 7,875 neonates [19], and MIMIC-IV includes 524,740 
admissions for 382,278 patients at this center from 2008 
to 2019 [20, 21]. The included criteria were (1) aged ≥ 18 
years; (2) diagnosed with AP upon intensive care unit 
(ICU) admission. Excluded criteria were (1) patients 
with a length of ICU stay less than 24  h; (2) diagnosed 
as sepsis upon ICU admission. he requirement of ethical 
approval for this was waived by the Institutional Review 
Board of Tianjin Medical University General Hospital, 
because the data was accessed from MIMIC III database 
and MIMIC IV database (publicly available database). 
The need for written informed consent was waived by the 
Institutional Review Board of Tianjin Medical University 
General Hospital due to retrospective nature of the study. 
All methods were performed in accordance with the rel-
evant guidelines and regulations.

Data extraction
Data collected from the database including (1) baseline 
characteristics: age (years), gender (male), Race (Black, 
White, and other), insurance (government, private, and 
unknown), marital status (divorced, married, separated, 
single, widowed, and unknown), interventions (vaso-
pressors, mechanical ventilation), and effusion; (2) vital 
signs: heart rate (bpm), respiratory rate (breaths/min-
ute), temperature (°C), SpO2 (%), systolic blood pressure 
(SBP, mmHg), diastolic blood pressure (DBP, mmHg); 
(3) scoring systems: SOFA score, qSOFA score, SAPS II 
score, BISAP, SIRS, Glasgow Coma Scale (GCS), charlson 
comorbidity index (CCI), International Normalized Ratio 
(INR); (4) laboratory values: white blood cell (WBC, K/
uL) count, platelet count (K/uL), hemoglobin (g/dL), 
red blood cell distribution width (RDW, %), hematocrit 
(%), bilirubin (mg/dL), blood creatinine (mg/dL), pro-
thrombin time (PT, sec), partial thromboplastin time 

https://mimic.mit.edu/docs/iii/
https://mimic.mit.edu/docs/iii/
https://mimic.mit.edu/docs/iv/
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(PTT, sec), blood urea nitrogen (BUN, mg/dL), glucose 
(mg/dL), calcium (mg/dL), sodium (mEq/L), chloride 
(mEq/L), and total bicarbonate (mEq/L). All the data 
were extracted from the data generated within the first 
24 h after the patient entered the ICU.

Variable definition
Patients diagnosed with AP were determined by using 
the International Classification of Diseases (ICD) (ninth 
edition, code 577.0 or 10th version, code K 85.0) codes. 
Sepsis was diagnosed according to the sepsis-3 criteria 
[22]; in brief, patients with documented or suspected 
infection and an acute change in total SOFA score of 
≥ 2 points were considered to have sepsis. Infection was 
identified from the ICD code.

SOFA score calculated the dysfunction of six organ sys-
tems and the severity of the dysfunction, including the 
respiratory, coagulation, liver, cardiovascular, kidney, and 
nervous systems with a score of 0–4 for each item and a 
total score of 0–24 [23]. qSOFA score: calculated by the 
presence of changes in mental status, respiratory rate > 22 
breaths per minute, and preoperative systolic blood pres-
sure < 100 mmHg [22]. The SAPS II score (0-163) consists 
of 17 variables composed of 12 physiological variables, 
age, type of admission, and three different underlying 
disease variables [24]. Components of the BISAP scor-
ing system included BUN > 25  mg/dl, impaired mental 
status, SIRI, age > 60 years, and pleural effusion [25]. SIRS 
was defined as two or more out of the following four: 
temperature > 38.0  °C or < 36.0  °C, heart rate > 90 beats/
minute, respiratory rate > 20 breaths/minute, leukocyto-
sis > 12,000/dL, or leucopenia < 4,000/dL [26].

Outcome and follow-up
The outcome of the study was the risk of sepsis. Follow-
up was conducted during hospitalization in the ICU and 
the end point of follow-up was sepsis or discharge from 
the ICU. The mean follow-up time was 3.64 (1.93–9.70) 
days.

Construction and performances assessment of the 
machine learning models
The patients were randomly divided into two groups, of 
which 80% were used as the training set and the remain-
ing 20% as the testing set. Based on the predictive factors 
selected, 6 machine learning models were constructed 
including support vector machine (SVM), K-nearest 
neighbor (KNN), multi-layer perceptron (MLP), LR, 
gradient boosting decision tree (GBDT), and adaptive 
enhancement algorithm (AdaBoost). The models were 
evaluated and compared by sensitivity, specificity, posi-
tive prediction value (PPV), negative prediction value 
(NPV), accuracy, and the AUC of the ROC.

Sample size calculation for predictive models
Our sample size calculation aimed to ensure a precise 
estimation of model parameters while minimizing the 
potential of overfitting. In order to achieve the goal of an 
average absolute prediction error (MAPE) of 0.05, as sug-
gested by Riley et al. [27], 478 samples would be sufficient 
for a maximum of 13 predictors, a statistically deter-
mined risk prediction model.

Statistical analyses
Variables with more than 20% missing values were 
excluded from further analysis. Random forest imputa-
tion was used to deal with missing data below 20%. Ran-
dom forest imputation is a nonparametric algorithm that 
accommodates nonlinearities and interactions and does 
not require the specification of a specific parametric 
model [28]. Supplementary Table  1 shows the variables 
with missing values below 20%. Sensitivity analysis was 
performed to compare the data before and after imputa-
tion (Supplementary Table  2). Means ± standard devia-
tions (SD) was used to describe the distribution of 
normally distributed measurement data, and T-test was 
used to compare the differences between the two groups. 
Medians and quartiles were used to represent measure-
ment data that conformed to a normal distribution, 
and rank-sum tests were used for comparisons between 
groups. Count data were expressed as the number of 
cases and composition ratio (%), and the chi-square test 
was used for comparison between groups.

The least absolute shrinkage and selection operator 
(LASSO) (“LassoCV” method in Sklearn) regression plus 
5-fold cross-validation were used to screen and confirm 
the predictive factors and selected the best alpha = 0.0075 
when one standard error of the minimum mean squared 
error (MSE) was used as a screening criterion. In order 
to select the optimal model from the 6 machine learn-
ing models, Delong’s test was used. Comparing the per-
formance of the optimal machine learning model with 
LR, scoring systems (SOFA, qSOFA, SIRS, SAPS II, and 
BIASP). Clinical benefit was assessed using Decision 
Curve Analysis (DCA). A P < 0.05 was considered statisti-
cally significant. Python 3.9.0 (Python Software Founda-
tion) and R (version 4.2.2) were used for all analyses.

Results
Basic characteristics of the study population
A total of 1,930 participants diagnosed with AP were 
screened from MIMIC III and MIMIC IV databases; of 
these 1,930 patients, 256 were excluded due to the length 
of ICU stay less than 24  h, and 2 were excluded due to 
the age < 18 years. Finally, 1, 672 patients were eligible 
for participation, with 1,338 patients in the training set 
and 334 patients in the testing set. The flow chart of the 
participants’ selection is depicted in Fig. 1. In the training 
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set, 261 AP patients (19.51%) were diagnosed with sepsis. 
In the training set, the mean age of the AP patients with 
sepsis was 58.43 (16.50) years, 58.2% of the AP patients 
with sepsis were male, 42.9% of the AP patients with sep-
sis were married, 67.8% of the AP patients with sepsis 
were on vasopressors, and 95.8% of the AP patients with 
sepsis were on mechanical ventilation. The mean GCS 
score of AP patients with sepsis was 9.73 (4.48), the mean 
heart rate of AP patients with sepsis was 102.91 (23.15) 
bpm, and the mean respiratory rate of AP patients with 
sepsis was 22.57 (6.86) breaths/minute. There were sig-
nificant differences between AP patients with and with-
out sepsis in insurance, marital status, vasopressors, 

mechanical ventilation, GCS, heart rate, SBP, respiratory 
rate, SpO2, WBC, RDW, blood creatinine, BUN, bicar-
bonate, SOFA, qSOFA, SAPS II, SIRS, and BISAP (each 
P < 0.05). All baseline characteristics of the study popula-
tion are summarized in Table 1.

Predictive factors selection for the risk of sepsis in AP 
patients
After LASSO regression selection with 5-fold cross-val-
idation via minimum criteria, 13 variables remain as the 
predictive factors for the risk of sepsis in AP patients: age, 
insurance, vasopressors, mechanical ventilation, GCS, 
heart rate, respiratory rate, temperature, SpO2, platelet, 

Fig. 1  The flow chart of the participants selection
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Table 1  Basic characteristics of study population
Variables The training set (n = 1338) The testing set (n = 334)

Sepsis Sepsis

No (n = 1077) Yes (n = 261) P No (n = 268) Yes (n = 66) P
Age, years, (mean (SD)) 58.73 (17.48) 58.43 (16.50) 0.802 59.30 (17.01) 57.10 (16.36) 0.342

Gender (male), n (%) 603 (56.0) 152 (58.2) 0.557 152 (56.7) 36 (54.5) 0.857

Ethnicity, n (%) 0.071 0.21

Black 108 (10.0) 30 (11.5) 26 (9.7) 2 (3.0)

Other 257 (23.9) 78 (29.9) 72 (26.9) 20 (30.3)

White 712 (66.1) 153 (58.6) 170 (63.4) 44 (66.7)

Insurance, n (%) < 0.001 < 0.001

Government 603 (56.0) 131 (50.2) 144 (53.7) 31 (47.0)

Private 212 (19.7) 21 (8.0) 61 (22.8) 5 (7.6)

Unknown 262 (24.3) 109 (41.8) 63 (23.5) 30 (45.5)

Marital status, n (%) 0.021 0.137

Divorced 86 (8.0) 9 (3.4) 15 (5.6) 8 (12.1)

Married 452 (42.0) 112 (42.9) 113 (42.2) 26 (39.4)

Separated 2 (0.2) 2 (0.8) 2 (0.7) 0 (0.0)

Single 333 (30.9) 85 (32.6) 99 (36.9) 18 (27.3)

Unknown 87 (8.1) 31 (11.9) 21 (7.8) 10 (15.2)

Widowed 117 (10.9) 22 (8.4) 18 (6.7) 4 (6.1)

Vasopressors (yes), n (%) 288 (26.7) 177 (67.8) < 0.001 73 (27.2) 48 (72.7) < 0.001

Mechanical ventilation (yes), n (%) 695 (64.5) 250 (95.8) < 0.001 165 (61.6) 62 (93.9) < 0.001

GCS, (mean (SD) 13.74 (2.28) 9.73 (4.48) < 0.001 13.54 (2.48) 8.61 (4.18) < 0.001

CCI, M (Q1, Q3) 3.00 (1.00, 5.00) 3.00 (1.00, 5.00) 0.489 3.00 (1.00, 5.00) 2.50 (1.00, 5.00) 0.074

Heart rate, bpm, mean (SD) 98.44 (20.56) 102.91 (23.15) 0.002 97.54 (21.12) 107.39 (25.32) 0.001

SBP, mmHg, mean (SD) 128.35 (25.65) 122.89 (27.50) 0.002 129.56 (24.97) 123.82 (28.57) 0.105

DBP, mmHg, mean (SD) 70.97 (18.71) 69.38 (18.99) 0.221 71.21 (18.68) 70.71 (21.83) 0.852

Respiratory rate, breaths/minute, mean (SD) 20.82 (6.35) 22.57 (6.86) < 0.001 20.77 (6.36) 21.83 (7.87) 0.249

Temperature, °C, mean (SD) 36.85 (1.02) 36.87 (1.10) 0.824 36.88 (1.06) 37.22 (1.08) 0.018

SpO2, % (mean (SD) 96.33 (4.22) 95.41 (5.38) 0.003 96.44 (3.39) 96.32 (3.44) 0.800

WBC, K/uL, (mean (SD) 13.69 (8.29) 15.58 (9.16) 0.001 14.44 (14.24) 15.33 (9.20) 0.631

Platelet, K/uL, (mean (SD) 216.55 (128.30) 217.84 (140.82) 0.887 213.74 (124.85) 202.53 (131.16) 0.518

Hemoglobin, g/dL, mean (SD) 11.14 (2.23) 11.28 (2.50) 0.391 11.26 (2.15) 10.80 (2.53) 0.135

RDW, %, mean (SD) 15.05 (1.95) 15.50 (2.59) 0.002 15.04 (1.93) 15.23 (2.27) 0.502

Hematocrit, %, mean (SD) 33.26 (6.49) 34.03 (7.56) 0.095 33.70 (6.44) 32.70 (7.49) 0.278

Bilirubin, mg/dL, mean (SD) 2.59 (3.80) 2.91 (5.01) 0.265 2.57 (4.83) 3.38 (6.17) 0.248

Blood creatinine, mg/dL, M (Q1, Q3) 1.00 (0.70, 1.70) 1.30 (0.80, 2.30) < 0.001 1.10 (0.70, 1.80) 1.55 (0.90, 2.65) 0.008

INR, mean (SD) 1.61 (0.98) 1.65 (1.16) 0.546 1.60 (1.31) 1.58 (0.78) 0.907

PT, sec, mean (SD) 16.89 (8.17) 17.76 (10.78) 0.15 16.74 (10.18) 17.19 (7.47) 0.733

PTT, sec, mean (SD) 35.89 (18.54) 37.36 (19.23) 0.255 32.78 (9.68) 35.88 (10.94) 0.024

BUN, mg/dL, mean (SD) 27.75 (23.91) 32.85 (25.48) 0.002 30.07 (28.00) 39.58 (31.88) 0.017

Glucose, mg/dL, mean (SD) 154.65 (117.42) 167.09 (109.81) 0.12 144.87 (101.00) 141.29 (52.40) 0.781

Calcium, mg/dL, mean (SD) 7.11 (2.44) 6.81 (2.51) 0.073 7.07 (2.49) 6.44 (2.79) 0.074

Sodium, mEq/L, mean (SD) 138.25 (5.35) 138.67 (6.00) 0.265 138.55 (5.89) 138.53 (7.10) 0.983

Chloride, mEq/L, mean (SD) 104.88 (6.99) 105.05 (7.43) 0.728 105.31 (7.45) 105.91 (7.40) 0.561

Bicarbonate, mEq/L, mean (SD) 21.45 (5.53) 20.54 (5.80) 0.018 21.48 (5.29) 20.24 (6.01) 0.098

Effusion = 1 (%) 118 (11.0) 31 (11.9) 0.753 42 (15.7) 8 (12.1) 0.595

SOFA, M (Q1, Q3) 5.00 (3.00, 7.00) 9.00 (6.00, 13.00) < 0.001 5.00 (2.00, 7.00) 11.00 (7.00, 14.75) < 0.001

qSOFA, (Q1, Q3) 2.00 (1.00, 2.00) 2.00 (2.00, 3.00) < 0.001 2.00 (1.00, 2.00) 3.00 (2.00, 3.00) < 0.001

SAPS II, M (Q1, Q3) 33.00 (24.00, 
44.00)

44.00 (32.00, 
56.00)

< 0.001 33.00 (23.00, 
44.00)

49.00 (33.75, 
60.00)

< 0.001

SIRS, M (Q1, Q3) 3.00 (2.00, 4.00) 3.00 (3.00, 4.00) < 0.001 3.00 (2.00, 4.00) 3.00 (3.00, 4.00) 0.033

BISAP, M (Q1, Q3) 2.00 (2.00, 3.00) 3.00 (2.00, 3.00) < 0.001 2.00 (2.00, 3.00) 3.00 (2.00, 4.00) < 0.001
Notes: GCS: Glasgow coma scale; CCI: Charlson comorbidity index; WBC: White blood cell count; Platelet: Platelet count; RDW: Red blood cell distribution width; 
INR: International normalized ratio; PT: Prothrombin time; PTT: Partial thromboplastin time; BUN: Blood urea nitrogen; SOFA: Sequential organ failure assessment 
score; qSOFA: Quick SOFA; SAPSII: Simplified acute physiology score II; SIRS: Systemic inflammatory response syndrome; BISAP: Bedside index of severity in acute 
pancreatitis; M: Median; SD: Standard deviations; Q1: 25% Quantile; Q3: 75% Quantile
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RDW, INR, and BUN. Figure  2 shows the loss curves 
for the MSE loss with different Lambda. The SHAP plot 
(Fig. 3) shows the relationship between the value of fea-
tures and their impact on the model prediction. Each row 
represents the SHAP value distributions of a feature, and 
the x-axis refers to the SHAP value, where the value of 
SHAP > 0 shows that the prediction favors the positive 
class, and a value < 0 indicates that the prediction tends 
to be the negative class. The color of sample points in 
Fig.  3 indicates the corresponding feature value: red-
der points mean higher feature importance values, while 
bluer points indicate lower feature values. The features 
are sorted according to the sum of SHAP values incorpo-
rating all the samples in the dataset.

Construction and performance validations of machine 
learning models
Based on the predictive factors, 6 machine learning mod-
els were constructed. The AUC value in the training set 

of the GBDT model was 0.994 [95% confidence interval 
(CI): 0.988 to 1.000], higher than the AUC value of the LR 
model (0.890, 95% CI: 0.860 to 0.920), AdaBoost model 
(0.918, 95% CI: 0.894 to 0.941), SVM model (0.912, 95% 
CI: 0.888 to 0.936), KNN model (0.908, 95% CI: 0.883 to 
0.933), and MLP model (0.948, 95% CI: 0.929 to 0.967). In 
the testing set, GBDT had the highest AUC value (0.985, 
95% CI: 0.966 to 1.000), thereby, GBDT was selected as 
the final predictive model. The ACU of the GBDT model 
(0.985, 95% CI: 0.966 to 1.000) was higher than the LR 
model (0.896, 95% CI: 0.841 to 0.951), achieving statis-
tical significance (P < 0.001). Comparisons of predic-
tive performances among machine learning models are 
shown in Table 2.

Fig. 2  The loss curves for the MSE loss with different Lambda
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Comparisons of the predictive performances of the GBDT 
model with LR model, SOFA, qSOFA, SAPS II, SIRS, and 
BISAP scores
In the testing set, the GBDT model achieved the best 
performance with an AUC of (0.985, 95% CI: 0.966 to 
1.000) compared with qSOFA score (AUC: 0.780, 95% CI: 
0.709 to 0.852, P < 0.001), SAPS II score (AUC: 0.625, 95% 
CI: 0.529 to 0.720, P < 0.001), SIRS (AUC: 0.552, 95% CI: 
0.461 to 0.64, P < 0.001), SOFA score (AUC: 0.745, 95% 
CI: 0.660 to 0.829, P < 0.001), and BISAP score (0.566, 
95% CI: 0.472 to 0.660, P < 0.001). Comparisons of the 
predictive performances of the GBDT model with SOFA, 

qSOFA, SAPS II, SIRS, and BISAP scores. Comparisons 
of the predictive performances of the GBDT model with 
SOFA, qSOFA, SAPS II, SIRS, and BISAP scores are 
shown in Table  3. Figure  4 shows the ROC curve com-
parison between GBDT and LR models and scoring sys-
tems. The net benefit for predicting sepsis in AP patients 
using the GBDT model was greater than the LR model 
and scoring systems at different threshold probabilities 
(Fig. 5).

Fig. 3  The SHAP plot of the relationship between the value of features and their impact on the model prediction
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Discussion
In this retrospective study, we developed and validated 
machine learning-based models for predicting sepsis in 
AP patients. In the training set, 261 AP patients (19.51%) 
were diagnosed with sepsis. The results of this study 
showed that the GBDT model had an excellent perfor-
mance in the prediction of sepsis in patients with AP, 
with the AUC in the testing set at 0.985. Furthermore, the 
GBDT model achieved better predictive performance for 
sepsis prediction in AP patients compared with the LR 
model, and scoring systems.

Advanced machine learning methods are good at deal-
ing with high-order interactions and fitting complex non-
linear relationships, and can be used to integrate large 
amounts of data from electronic health records (EHRs). 
The application of machine learning to data-driven analy-
sis shows promise for improving predictive performance 
in healthcare [29–31]. A large retrospective study devel-
oped and validated a machine learning tool within 48 h 
after admission for predicting which patients with AP 
[32]. A retrospective study enrolling patients with AP 
from multiple centers explored a machine learning model 
for early identification of severe AP (SAP) among patients 

hospitalized for AP, and the model showed evident clini-
cal practicability [17]. The study by Qiu et al. developed 
and validated three machine-learning models for pre-
dicting multiple organ failure in moderately severe and 
severe AP [33]. A systematic review included 47 machine 
learning predictive models for AP, with 10 studies report-
ing severity prediction, 10 studies complication predic-
tion, 3 studies mortality prediction, 2 studies recurrence 
prediction, and 2 studies surgery timing prediction [34]. 
The study by İnce et al. evaluated the success of artificial 
intelligence for early prediction of severe course, survival, 
and ICU requirements in patients with AP [35]. A meta-
analysis suggested that the machine learning approach 
had a better performance than the existing sepsis scor-
ing systems in predicting sepsis [36]. A systematic review 
and meta-analysis showed that individual machine learn-
ing models can accurately predict sepsis onset ahead 
of time [37]. A machine learning model for prediction 
of sepsis in ICU patients showed good predictive abil-
ity in Chinese sepsis patients [16]. However, there have 
been limited studies that constructed predictive models 
for the risk of sepsis in patients with AP using machine 
learning methods. This study used machine learning 

Table 2  Construction and performance validations of machine learning models
Methods AUC (95% CI) Delong 

test
Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI) PPV (95%CI) NPV 

(95%CI)
In training 
set

GBDT 0.994 (0.988-1.000) Ref 0.994 (0.988-1.000) 0.996 (0.989-1.000) 0.992 (0.982-1.000) 0.992 (0.982-1.000) 0.996 
(0.989-1.000)

LR 0.890 (0.860–0.920) < 0.001 0.834 (0.802–0.866) 0.810 (0.762–0.857) 0.858 (0.815-0.900) 0.852 (0.808–0.896) 0.817 
(0.771–0.863)

AdaBoost 0.918 (0.894–0.941) < 0.001 0.918 (0.894–0.941) 0.962 (0.939–0.985) 0.873 (0.833–0.914) 0.885 (0.848–0.922) 0.958 
(0.932–0.983)

SVM 0.912 (0.888–0.936) < 0.001 0.912 (0.888–0.936) 0.924 (0.892–0.956) 0.900 (0.864–0.936) 0.903 (0.868–0.939) 0.921 
(0.888–0.954)

KNN 0.908 (0.883–0.933) < 0.001 0.908 (0.883–0.933) 0.916 (0.883–0.950) 0.900 (0.864–0.936) 0.903 (0.867–0.938) 0.914 
(0.880–0.948)

MLP 0.948 (0.929–0.967) < 0.001 0.948 (0.929–0.967) 0.958 (0.934–0.982) 0.938(0.909–0.968) 0.940 (0.912–0.969) 0.957 
(0.932–0.982)

In testing 
test

GBDT 0.985 (0.966-1.000) Ref 0.969 (0.940–0.999) 1.000 (1.000–1.000) 0.940 (0.884–0.997) 0.941 (0.885–0.997) 1.000 
(1.000–1.000)

LR 0.896 (0.841–0.951) < 0.001 0.763 (0.691–0.836) 0.828 (0.736–0.921) 0.701 (0.592–0.811) 0.726 (0.624–0.828) 0.810 
(0.709–0.911)

AdaBoost 0.940 (0.900–0.980) 0.099 0.939 (0.898–0.980) 0.984 (0.954-1.000) 0.896 (0.822–0.969) 0.900 (0.830–0.970) 0.984 
(0.952-1.000)

SVM 0.924 (0.879–0.970) 0.031 0.924 (0.878–0.969) 0.953 (0.901-1.000) 0.896 (0.822–0.969) 0.897 (0.825–0.969) 0.952 
(0.900-1.000)

KNN 0.924 (0.878–0.970) 0.030 0.924 (0.878–0.969) 0.938 (0.878–0.997) 0.910 (0.842–0.979) 0.909 (0.840–0.978) 0.938 
(0.880–0.997)

MLP 0.916 (0.868–0.964) 0.017 0.916 (0.869–0.964) 0.922 (0.856–0.988) 0.910 (0.842–0.979) 0.908 (0.837–0.978) 0.924 
(0.860–0.988)

Notes: SVM: Support vector machine; KNN: K-nearest neighbor; MLP: multi-layer perceptron; LR: logistic regression; GBDT: gradient boosting decision tree; AdaBoost: 
adaptive enhancement algorithm; PPV: Positive predictive values; NPV: Negative predictive values; AUC: Area under curve; CI: confidence interval; Ref: Reference
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methods to construct predictive models for the risk of 
sepsis in patients with AP and validated the predictive 
performance.

The results of this study showed that the GBDT model 
had an excellent performance in predicting sepsis in AP 
patients. The GBDT model has been applied to diagnose 
and predict the outcomes of several diseases. A study 
that developed and assessed machine learning models 
for predicting recurrence risk after endovascular treat-
ment in patients with intracranial aneurysms found that 
the GBDT model showed an optimal prediction perfor-
mance for predicting recurrence risk in patients with 
intracranial aneurysms after endovascular treatment in 
6 months [38]. Lee et al. established machine learning 
models for predicting the risk of end-stage renal disease 
among chronic kidney disease patients who survive sep-
sis, and the GBDT algorithm yielded an accuracy as high 
as 0.879, as measured using the AUC [39]. Furthermore, 
we compared the performance of models, the traditional 
LR model, and scoring systems to predict sepsis in AP 
patients in the early stage. The result showed that the 

GBDT model achieved the best performance in predict-
ing sepsis in terms of the predictive performance. Simi-
larly, a previous study suggested that compared to the 
classical LR model, machine learning models using fea-
tures that can be easily obtained at admission had a bet-
ter performance in predicting AKI in AP patients [40]. 
A retrospective temporal validation study suggested an 
interpretable machine learning model performed sig-
nificantly better than LR and outperformed conven-
tional severity scores in predicting in-hospital mortality 
among sepsis patients and varying subgroups [31]. The 
high AUC of the GBDT model, compared to traditional 
models and scoring systems suggested that machine 
learning models can be used frequently as an adjunct to 
clinical decision making and provider’s intuition regard-
ing patient prognosis and ideal next steps in care. Early 
and effective identification of high-risk patients with sep-
sis in AP patients can prevent further deterioration of the 
patient’s condition. This study helps clinicians to develop 
individualized treatment plans for patients, reducing the 

Table 3  Comparisons of the predictive performances of the GBDT model with LR model, SOFA, qSOFA, SAPS II, SIRS, and BISAP scores
Methods AUC (95%CI) De-

long 
test

Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI) PPV (95%CI) NPV 
(95%CI)

In the 
training 
set

GBDT 
model

0.994(0.988-1.000) Ref 0.994(0.988-1.000) 0.996(0.989-1.000) 0.992(0.982-1.000) 0.992(0.982-1.000) 0.996(0.989-
1.000)

qSOFA 0.742(0.703–0.780) < 0.001 0.673(0.633–0.713) 0.479(0.419–0.539) 0.869(0.828–0.910) 0.787(0.724–0.851) 0.623(0.573–
0.672)

SAPSII 0.652(0.605–0.698) < 0.001 0.587(0.545–0.629) 0.574(0.514–0.634) 0.600(0.540–0.660) 0.592(0.532–0.652) 0.582(0.523–
0.641)

SIRS 0.592(0.547–0.637) < 0.001 0.562(0.520–0.605) 0.452(0.392–0.513) 0.673(0.616–0.730) 0.583(0.516–0.651) 0.549(0.494–
0.603)

SOFA 0.761(0.720–0.802) < 0.001 0.713(0.674–0.752) 0.662(0.604–0.719) 0.765(0.714–0.817) 0.740(0.684–0.796) 0.691(0.638–
0.744)

BISAP 0.649(0.605–0.694) < 0.001 0.614(0.572–0.655) 0.654(0.597–0.711) 0.573(0.513–0.633) 0.608(0.551–0.665) 0.621(0.559–
0.682)

In the test-
ing set

GBDT 0.985(0.966-1.000) Ref 0.969(0.940–0.999) 1.000(1.000–1.000) 0.940(0.884–0.997) 0.941(0.885–0.997) 1.000(1.000–
1.000)

qSOFA 0.780(0.709–0.852) < 0.001 0.710(0.632–0.788) 0.516(0.393–0.638) 0.896(0.822–0.969) 0.825(0.707–0.943) 0.659(0.562–
0.757)

SAPSII 0.625(0.529–0.720) < 0.001 0.557(0.472–0.642) 0.500(0.378–0.623) 0.612(0.495–0.729) 0.552(0.424–0.680) 0.562(0.448–
0.675)

SIRS 0.552(0.461–0.643) < 0.001 0.527(0.441–0.612) 0.469(0.346–0.591) 0.582(0.464-0.700) 0.517(0.389–0.646) 0.534(0.420–
0.649)

SOFA 0.745(0.660–0.829) < 0.001 0.687(0.608–0.766) 0.641(0.523–0.758) 0.731(0.625–0.837) 0.695(0.577–0.812) 0.681(0.573–
0.788)

BISAP 0.566(0.472–0.660) < 0.001 0.542(0.457–0.627) 0.562(0.441–0.684) 0.522(0.403–0.642) 0.529(0.411–0.648) 0.556(0.433–
0.678)

Notes: GBDT: gradient boosting decision tree; SOFA: Sequential organ failure assessment score; qSOFA: Quick SOFA; SAPSII: Simplified acute physiology score II; SIRS: 
Systemic inflammatory response syndrome; BISAP: Bedside index of severity in acute pancreatitis; PPV: Positive predictive values; NPV: Negative predictive values; 
AUC: Area under curve; CI: confidence interval; Ref: Reference
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disease burden on patients and facilitating the rational 
allocation of medical resources.

GBDT is an ensemble algorithm widely used for regres-
sion and classification tasks. The GBDT algorithm creates 
multiple weak learners or individual trees by bootstrap-
ping training samples and integrates their outputs to 
make predictions. The GBDT algorithm is less sensitive 
to hyperparameters, less prone to overfitting, and easy to 
implement. For the practical applicability of the GBDT 
model in a clinical setting, an example of how SHAP 
can be used locally to explain individual prediction was 
provided (Supplementary Fig.  1). The GBDT model is a 
promising approach for sepsis prediction in AP patients, 
but further research is still needed to evaluate its gener-
alizability to other tasks and its computational efficiency.

This study suggested that the basic characteristics of 
patients (age, temperature, and insurance) and vital signs 
(heart rate, respiratory rate, and SpO2 were associated 
with the risk of sepsis in AP. A study by Hong et al. indi-
cated that age may be useful for predicting the develop-
ment of persistent organ failure in patients with AP [41]. 
According to the study by Miller et al., an ED-SAS score 
that incorporates factors including SpO2 and age pro-
vides a rapid method for predicting prognosis in AP [42]. 
The temperature has been reported as a predictor factor 
for sepsis in AP patients [9]. heart rate has been observed 

Fig. 5  The net benefit of GBDT model, LR model, and scoring systems at different threshold probabilities for predicting sepsis in AP patients

 

Fig. 4  The ROC curve comparison between GBDT and LR models and 
scoring systems
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to be associated with severe AP [43]. The interventions 
also can predict the risk of sepsis in AP. Early vasopres-
sor use was significantly associated with increased in-
hospital mortality among critically ill AP patients [44]. 
We found that the inflammatory markers including RDW 
and platelets can predict the risk of sepsis in AP patients. 
As a part of routine blood tests, RDW is a quantitative 
measurement of the size variability of peripheral blood 
red blood cells (RBCs), which reflects the heterogeneity 
of RBCs. Because the changes in the shape and size of 
circulating red blood cells are often related to the occur-
rence and development of hematological diseases, RDW 
is used for the morphological classification of anemia and 
differential diagnosis of microcytic anemia [45]. RDW is 
positively associated with AP severity and is likely a use-
ful predictive parameter of AP severity [46]. Platelets are 
small pieces of cytoplasm shed by mature megakaryo-
cytes, which participate in the hemostasis function of the 
body. When the stress effect secondary to acute and criti-
cal diseases occurs in the body, the number of platelets 
will change, and the degree of platelet change will affect 
sepsis [47]. A study by Feng et al. found that a low platelet 
count increases the risk of sepsis in patients with AP [9]. 
Simple, routine, and widespread individual laboratory 
parameter, BUN has been proposed as marker of disease 
severity [48]. In this study, BUN could be used to predict 
the risk of sepsis in AP patients. A study by Hong et al. 
demonstrated that BUN could predict severe AP [49]. 
Farrell et al. found that persistent elevation of BUN is 
associated with the development of severe AP [50]. Pre-
vious studies have also suggested that BUN is strongly 
associated with sepsis [51, 52]. GCS was originally used 
as an assessment tool for patients with head injuries to 
assess the coma of patients, which has become an impor-
tant part of the system to determine the severity of an 
injury [53]. In this study, GCS could predict the risk of 
sepsis in patients with AP. A retrospective analysis also 
demonstrated that GCS was among the predictive factor 
of sepsis among patients with AP [9].

Our study has several strengths. To the best of our 
knowledge, we first report the application of machine 
learning models to predict the risk of sepsis in AP 
patients using the MIMIC database. The optimal model 
was screened using a variety of machine learning meth-
ods and showed significantly better predictive value than 
LR and scoring systems, providing a basis for the accurate 
prediction of sepsis risk in AP patients. The sample size 
in this study is very sufficient for the construction and 
validation of prediction models. A larger sample size is 
valuable for developing a more robust prediction model, 
which has good generalization ability and good statisti-
cal efficacy for a wider population. However, the study 
was still subject to some limitations. First, the retrospec-
tive nature of the study may have introduced unavoidable 

selection bias, which limits the interpretation of the 
results. Second, the MIMIC data were obtained from a 
single center in the United States, which may affect the 
generalizability of the prediction model to other popu-
lations. The results may not be representative of the 
entire population of AP patients, although we attempted 
to provide detailed information in our study. Third, the 
study included AP patients in MIMIC-III and IV, which 
included hospitalized patients from 2001 to 2019. The 
population studied here is not consecutive and therefore 
different biases may have been introduced. As treatment 
regimens are developed and optimized, consistency of 
treatment regimens cannot be guaranteed, which may 
introduce some bias into the results. Fourth, radiological 
results in AP, specific chemoradiotherapy information, 
and medication dosage in vasopressors and mechani-
cal ventilation may have an impact on our results, but 
the lack of radiological data in the database prevented us 
from performing further analyses. Fifth, the study lacked 
external validation. External validation is crucial to assess 
the generalizability and reliability of the model, especially 
when using data from a single center. Therefore, it would 
be important to perform further validation on an inde-
pendent dataset in future studies to examine the robust-
ness and generalization ability of the proposed model, 
which might greatly increase the impact of the cur-
rent finding. Future research will need to explore other 
machine learning algorithms for predicting sepsis in AP 
patients.

Conclusions
This study constructed and validated machine learning 
models to predict sepsis in patients with AP. The GBDT 
model, based on 13 predictive factors, showed promising 
performance in predicting sepsis in AP patients. A pre-
diction model is a useful tool for the early identification 
of high-risk patients and timely clinical intervention.
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